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Abstract. The Macaulay2 [5] package AlgebraicOptimization implements methods for deter-
mining the algebraic degree of an optimization problem. We describe the structure of an algebraic
optimization problem and explain how the methods in this package may be used to determine the
respective degrees. Special features include determining Euclidean distance degrees and maximum
likelihood degrees. To our knowledge, this is the first comprehensive software package combining
different methods in algebraic optimization. The package is available at https://github.com/

Macaulay2/Workshop-2020-Cleveland/tree/ISSAC-AlgOpt/alg-stat/AlgebraicOptimization.

1. Introduction

The algebraic degree of an optimization problem is an important invariant in applied algebraic
geometry. It gives an algebraic measure of complexity to a problem and has been studied in
the context of nearest point problems [3], maximum likelihood estimation [2, 6], and semidefinite
programming [4].

The optimization degree [7] can be determined by computing the degree of an ideal. Let X
denote an affine variety in Cn. Given an objective function Ψ : X → C with a gradient denoted
by ∇Ψ, our aim is to compute the ideal Crit0(Ψ, X) of the set of isolated critical points of Ψ on
the regular locus of X. We call the ideal Crit0(Ψ, X) the (nondegenerate) critical ideal of X with
respect to Ψ.

Suppose (f1, . . . , fN ) generate the radical ideal of X, and assume X has codimension c. Then
Crit0(Ψ, X) is given by these steps. First, consider the ideal S, which consists of the generators of
the ideal of X along with minors of an augmented Jacobian matrix saturated by the ideal of the
singular locus of X,

(1) S :=

〈f1, . . . , fN 〉+

〈
(c+ 1)× (c+ 1) minors of

 ∇Ψ
∇f1

...
∇fN

〉 : I∞Xsing
.

Then let P denote the ideal of positive dimensional components of the variety of S. Then,

Crit0(Ψ, X) = S : P∞.

In the special case when S is zero dimensional, this simplifies to Crit0(Ψ, X) = S. The (nonde-
generate) optimization degree is the degree of Crit0(Ψ, X). In this package we develop tools to
generate these ideals and compute the respective degrees.

2. Package features

2.1. Euclidean distance degree. A classic example of the optimization degree is the Euclidean
distance (ED) degree. The ED degree of X is the optimization degree of the squared Euclidean
distance function with a generic choice of data u. If X is a projective variety, we can use the
following, which is more efficient than eq. (1) in some cases

Crit0(Ψ, X) =
(
IX +

〈
(c+ 2)× (c+ 2) minors of

[ x
u

Jac(IX)

]〉)
: (IXsing) · IQ)∞,(2)

where Q = {x ∈ Pn−1 : x2
1 + · · ·+ x2

n = 0} is the isotropic quadric, and Jac(IX) is the Jacobian of
the generators of IX . For more details on this formulation see [3, Section 2]. Our package imple-
ments ED degree computations via eqs. (1) and (2) with the functions probabilisticEDDegree
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Figure 1. The variety X in Example 2 and related critical points given by
Crit0(Ψ, X). The left pictures a data point and the minimizers of Euclidean distance
while the right pictures a data point and the corresponding MLE.

and symbolicEDDegree. The former chooses a random data point u, while the latter carries out
computations symbolically. These are the main ED degree functions in our package.

If X is an irreducible projective variety in general position, there are several other ways to com-
pute the ED degree: via multidegree, projections or sections. By [3, Thm. 5.4], the ED degree is
the sum of the multidegrees of the conormal variety. The function symbolicMultidegreeEDDegree

computes the multidegree symbolically, using the Hilbert polynomial, and probabilisticMultidegree-

EDDegree computes the multidegree by counting points in random linear slices of the ambient space.
The function projectionEDDegree projects X into a smaller ambient space such that the pro-

jection has codimension 1. By [3, Cor. 6.1] the ED degree of the projected variety is equal to the
ED degree of X. This can provide speedups when the codimension of X is large.

Example 1. Consider the Veronese surface in P5. We can confirm using different functions that
the ED degree is thirteen.

i1 : R = QQ[x_0..x_5];

i2 : I = minors(2, matrix{{x_0, x_1, x_2}, {x_1,x_3,x_4}, {x_2,x_4,x_5}});

i3 : elapsedTime probabilisticEDDegree I

-- 206.523 seconds elapsed

o3= 13

i4 : elapsedTime probabilisticMultidegreeEDDegree I

-- 473.283 seconds elapsed

o4 = 13

i5 : elapsedTime projectionEDDegree I

-- 5.99635 seconds elapsed

o5 = 13

�

2.2. Maximum likelihood degree. The maximum likelihood estimate (MLE) of a statistical
model is the minimizer of the likelihood function of the data. Tools of computational algebra can
be used when the statistical model is an algebraic variety. The maximum likelihood (ML) degree
is the number of complex critical points of the likelihood equations for generic data.

Example 2. Let X ⊆ C3 be defined by the ideal I = 〈4p0p2− p2
1〉 ⊆ C[p0, p1, p2]. The intersection

X ∩∆2 is the set of all possible probability distributions of a binomial random variable Y with two
trials. This is the blue curve pictured in Figure 1.

Suppose we observe Y and collect the results into a vector u = (u0, u1, u2) where ui is the number
of trials that resulted in i “heads”. The likelihood function, i.e. the likelihood of observing u is

Ψ(p0, p1, p2) = pu0
0 pu1

1 pu2
2 /(p0 + p1 + p2)u0+u1+u2 .
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The critical points of this model are precisely the points in Crit0(Ψ, X). In this case the ML degree
is one, so there is a unique MLE. This can be confirmed by calling MLequationsDegree I. The
data u = (17, 29, 12) in purple and respective MLE in red are pictured on the right in Figure 1.
The purple arrow shows the direction of the gradient of the likelihood function at the MLE. �

In statistics, many models are given by a parametrization. Our package has methods to com-
pute the ML degree for these models. More precisely, let F : Rd → Rn+1 be a polynomial map
whose image is a parametric model. Each coordinate fi of F is a polynomial in the model pa-
rameters θ = (θ0, ..., θd). Assuming the summation of fi’s is equal to one, the likelihood function
is f0(θ)u0f1(θ)u1 · · · fn(θ)un , where u = (u0, ..., un) is a vector of natural numbers. The function
parametricMLDegree computes the ML degree for a parametric model. For more details on para-
metric likelihood equations see [6, Section 7].

Example 3. We can check that the ML degree of the twisted cubic model, given in parametric
form, is 3.

i2 : R = QQ[t]; s=1;

i4 : F = {s^3*(-t^3-t^2-t+1), s^2*t, s*t^2, t^3};

i5 : parametricMLDegree (F)

o5 = 3

�

2.3. Toric models. Toric models are a commonly used class of models in algebraic statistics which
correspond to discrete exponential families in statistics. Well known examples include discrete
graphical models and hierarchical models. Our package has specialized methods for these models
which exploit their additional structure to compute their ML degree more quickly.

Toric models are typically given parametrically by a full rank matrix A ∈ Zd×r and a vector
c ∈ Cr. The scaled toric variety, denoted Xc

A, corresponding to the pair (A, c) is the Zariski closure

of the map φA,c : (C∗)d → (C∗)r in Cr given by

φA,c(θ1, . . . , θd) = (c1θ
a1 , . . . , crθ

ar).

By Birch’s Theorem, if the vector (1, 1, . . . 1) ∈ rowspan(A) then the ML degree of Xc
A is the number

of complex solutions to the equations

Au = nAp and p ∈ Xc
A \X(p1p2 . . . pr(p1 + p2 . . .+ pr))(3)

for generic data vectors u [1, Prop. 7]. Our package computes this degree using the parametric
description of the model with the function toricMLDegree. This method first chooses a random
data point u and then forms the ideal, IcA of equations given by Equation 3 but with p replaced by
φA,c(θ). It then forms the critical ideal of the likelihood function Ψ in terms of the parameters by
computing the saturation Crit0(Ψ, X) = IcA : I(θ1θ2 . . . θd(c1θ

a1 + c2θ
a2 + crθ

ar))∞.

Example 4. Let A and c be as they are below. The toric variety Xc
A is a scaled Segre embedding so

the corresponding toric ideal is generated by 2×2 minors. The general method MLequationsDegree

takes some time, whereas the specialized method toricMLDegree computes the ML degree quickly.

i2 : A = matrix {{1,1,1,0,0,0,0,0,0}, {0,0,0,1,1,1,0,0,0},

{0,0,0,0,0,0,1,1,1},{1,0,0,1,0,0,1,0,0},{0,1,0,0,1,0,0,1,0}}

i3 : c = {1,2,3,1,1,1,1,1,1};

i4 : R = QQ[p_1..p_9];

i5 : M = matrix {{p_1, p_4, p_7}, {p_2/2, p_5, p_8}, {p_3/3, p_6, p_9}}

i6 : I = minors(2, M);

i7 : elapsedTime MLequationsDegree I

-- 228.037 seconds elapsed
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o7 = 3

i8 : elapsedTime toricMLDegree(A, c)

-- 0.00849565 seconds elapsed

o8 = 3

�

2.4. Fritz John conditions and Lagrange multipliers. Instead of formulating the critical ideal
using minors to specify a rank deficiency like in eq. (1), one can use a null vector method. We
implement null vector methods involving Lagrange multipliers and Fritz John conditions.

Fritz John conditions are implemented for the ED degree computation. The determinental condi-
tions in eqs. (1) and (2) are expressed by finding a (nonzero) kernel element of the augmented matrix(

x− u
Jac(IW )

)
, where IW is an ideal generated by codim(IW ) polynomials, with IX as a minimal prime.

This is implemented in symbolicFritzJohnEDDegree and probabilisticFritzJohnEDDegree.
These functions tend to work well when the number of generators of I is larger than the codimen-
sion. Corresponding functionality using Lagrange multipliers is implemented in probabilistic-

LagrangeMultiplierOptimizationDegree.

i1 : R = QQ[x_1..x_6];

i2 : I = minors(2, matrix{{x_1, x_2, x_3}, {x_2, x_4, x_5}, {x_3, x_5, x_6}});

i3 : elapsedTime probabilisticEDDegree I

-- 179.771 seconds elapsed

o3 = 13

i4 : elapsedTime probabilisticFritzJohnEDDegree I

-- 4.95628 seconds elapsed

o4 = 13
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