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1 Introduction

Let y = (y1, . . . , yn) be a set of independent observations from a
statistical model. Consider exponential families of the form

p(y | ξ)= exp

(
n∑

a=1
yaξ

a+
r∑

b=1
ub(y)ξb+n−ψ∗(ξ)

)
, (1)

for some functions ub : Rn →R. We make the following interpre-
tation
• ξ1, . . . ,ξn are natural parameters associated to yi.

• ξn+1, . . . ,ξn+r are natural parameters common to all observa-
tions (e.g. variance, if assumed the same for all yi).

•ψ∗(ξ) is the logarithm of the normalizing constant.

If for i = 1, . . . ,n we have ξi = xi ·θ′ for a covariate vector xi ∈
Rd, we can view this exponential family as a generalized linear
model with canonical link function. If we set θd+b = ξn+b for all
b = 1, . . . , r we can write (1) as

p(y | θ)= exp
(
Y · X̃θ−ψ(θ)

)
. (2)

by setting Y (y)= (y1, . . . , yn,u1(y), . . . ,ur(y)) and for some matrix
X̃ .

2 Information geometry

We can view the model (2) as a manifold with a coordinate
system θ, where each point corresponds to a probability distri-
bution. Exponential families give rise to dually flat manifolds
[1]. The function ψ(θ) is the potential function of θ. From this
we get a dual coordinate system η, the expectation parameter,
given by

η=E[Y | θ]=
(
∂ψ(θ)
∂θ

)T

. (3)

3 Dually flat manifolds

The θ coordinate system is said to be exponential flat, or e-flat,
and the η coordinate system is mixture flat, or m-flat. We can
also obtain the Fisher information matrix from the potential
function

G =Hess(ψ(θ))= ∂2ψ(θ)
∂θ∂θT .

4 Extended LARS

The extended LARS algorithm [2] is a modification of LARS
(Least Angle Regression) to exponential families of the form
(2). The algorithm ranks the covariates by order of importance.
We start with the MLE of the model containing all covariates,
and at each step we find and eliminate the least impactful co-
variate:
• m-project the current estimate θ̂(k) onto each plane θ i = 0.

• identify the covariate i∗ whose m-projection is the closest (in
terms of Kullback–Leibler divergence).

• move along the diagonal of a cube until θ i∗ = 0.

θ̂(k)

θ
1 = 0

θ2= 0

θ 3= 0
θ̂(k+1)

5 Adding holonomicity

There are cases where ψ(θ) has no closed form expression, and
has to be evaluated by numerical integration. In this case the
coordinate conversion θ 7→ η in eq. (3) and the inverse conver-
sion η 7→ θ have to be computed numerically. Our main result is
the holonomic extended LARS, or HELARS. We use a method
inspired from the holonomic gradient method [3] to avoid nu-
merical integration. Instead, we will use computationally effi-
cient numerical ODE solvers.

If we have a holonomic ideal in the Weyl algebra annihilat-
ing ψ(θ), we can construct a Pfaffian system

∂Q
∂θ i = A i(θ)Q,

where ψ(θ) can be recovered from Q. Such an ideal can be ei-
ther computed by hand or algorithmically [4]. Using the Pfaf-
fian system, we can easily recover the conversion θ 7→η and the
Fisher information matrix.

In the first step of the algorithm, we use the holonomic gra-
dient method to compute the MLE of the model including all
covariates. Assume that at each step k we have computed
the value Q(θ̂(k)). We then need to compute m-projections,
which we do using the Newton-Raphson method. Since we
have the derivative and Hessian of ψ(θ) for free from the Pfaf-
fian system, we can avoid numerical integration. From the m-
projections we deduce the next point θ̂(k+1), and numerically
solve an ODE to obtain Q(θ̂(k+1)).
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