Marc Härkönen
PhD dissertation defense,
Apr 15 2022
$$ I = (x_1^2, x_1 x_2) \subset R = \mathbb{Q}[x_1, x_2] $$
$$ I = (x_1^2, x_1 x_2) \subset R = \mathbb{Q}[x_1, x_2] $$
$$ \frac{\partial^2 \phi}{\partial z_1^2} = \frac{\partial^2 \phi}{\partial z_1 \partial z_2} = 0 $$
Find $ \phi(z_1,z_2) \colon \RR^2 \to \CC$ satisfying the above
$$ I = (x_1^2, x_1 x_2) \subset R = \mathbb{Q}[x_1, x_2] $$
$$ \frac{\partial^2 \phi}{\partial z_1^2} = \frac{\partial^2 \phi}{\partial z_1 \partial z_2} = 0 $$
Find $ \phi(z_1,z_2) \colon \RR^2 \to \CC$ satisfying the above
Solution: $\phi(z_1,z_2) = \psi(z_2) + c_1 z_1$,
$c_1 \in \CC,~~\psi(z_2) \colon \RR \to \CC$ differentiable.
$$ I = (x_1^2, x_1 x_2) \subset R = \mathbb{Q}[x_1, x_2] $$
$$ \frac{\partial^2 \phi}{\partial z_1^2} = \frac{\partial^2 \phi}{\partial z_1 \partial z_2} = 0 $$
Find $ \phi(z_1,z_2) \colon \RR^2 \to \CC$ satisfying the above
Solution: $\phi(z_1,z_2) = \psi(z_2) + c_1 z_1$,
$c_1 \in \CC,~~\psi(z_2) \colon \RR \to \CC$ differentiable.
Dualities at two levels
$$ R = \KK[x_1,\dotsc,x_n], \qquad p \in \KK^n $$
$$ \begin{aligned} \partial_i \colon R &\to \KK \\ f &\mapsto \partial_i \bullet f = \frac{\partial f}{\partial x_i}(p). \end{aligned} $$
$$W_{\KK} := \KK[\partial_1,\dotsc,\partial_n], \qquad \partial^\alpha \bullet f = \frac{\partial^{|\alpha|} f}{\partial x^\alpha}(p)$$
$$W_{\KK} := \KK[\partial_1,\dotsc,\partial_n], \qquad \partial^\alpha \bullet f = \frac{\partial^{|\alpha|} f}{\partial x^\alpha}(p)$$
$$W_{\KK} := \KK[\partial_1,\dotsc,\partial_n], \qquad \partial^\alpha \bullet f = \frac{\partial^{|\alpha|} f}{\partial x^\alpha}(p)$$
Suppose $\mm \subset R$ is an arbitrary maximal ideal, $\kappa(\mm) = R/\mm$ the residue field.
$$ \begin{aligned} \partial_i \colon R &\to \kappa(\mm) \\ f &\mapsto \partial_i \bullet f = \frac{\partial f}{\partial x_i} \mod{\mm} \end{aligned} $$
$$W_{\kappa(\mm)} := \kappa(\mm)[\partial_1,\dotsc,\partial_n], \qquad \partial^\alpha \bullet f = \frac{\partial^{|\alpha|} f}{\partial x^\alpha} \mod{\mm}$$
$$W_{\kappa(\mm)} := \kappa(\mm)[\partial_1,\dotsc,\partial_n], \qquad \partial^\alpha \bullet f = \frac{\partial^{|\alpha|} f}{\partial x^\alpha} \mod{\mm}$$
$$W_{\kappa(\mm)} := \kappa(\mm)[\partial_1,\dotsc,\partial_n], \qquad \partial^\alpha \bullet f = \frac{\partial^{|\alpha|} f}{\partial x^\alpha} \mod{\mm}$$
$I$ is an arbitrary ideal
$ D_{\kappa(\mm)}[I] = D_{\kappa(\mm)}[I_\mm \cap R] $
$I$ is an arbitrary ideal
$ D_{\kappa(\mm)}[I] = D_{\kappa(\mm)}[I_\mm \cap R] $
$I$ is an ideal if and only if $D_\mm[I]$ is a local dual space
$\Lambda$ is a local dual space if and only if $I_\mm[\Lambda]$ is an ideal.
$I$ is an arbitrary ideal
$ D_{\kappa(\mm)}[I] = D_{\kappa(\mm)}[I_\mm \cap R] $
$I$ is an ideal if and only if $D_\mm[I]$ is a local dual space
$\Lambda$ is a local dual space if and only if $I_\mm[\Lambda]$ is an ideal.
$$I \subseteq J \implies D_\mm[I] \supseteq D_\mm[J] \qquad \Lambda \subseteq \Xi \implies I_\mm[\Lambda] \supseteq I_\mm[\Xi] $$
$I$ is an arbitrary ideal
$ D_{\kappa(\mm)}[I] = D_{\kappa(\mm)}[I_\mm \cap R] $
$I$ is an ideal if and only if $D_\mm[I]$ is a local dual space
$\Lambda$ is a local dual space if and only if $I_\mm[\Lambda]$ is an ideal.
$$I \subseteq J \implies D_\mm[I] \supseteq D_\mm[J] \qquad \Lambda \subseteq \Xi \implies I_\mm[\Lambda] \supseteq I_\mm[\Xi] $$
If $I$, $J$ ideals, $\Lambda, \Xi$ local dual spaces, then $$ \begin{aligned} D_{\mm}[I \cap J] = D_{\mm}[I] + D_{\mm}[J] && D_{\mm}[I + J] = D_{\mm}[I] \cap D_{\mm}[J] \\ I_{\mm}[\Lambda \cap \Xi] = I_{\mm}[\Lambda] + I_{\mm}[\Xi] && I_{\mm}[\Lambda + \Xi] = I_{\mm}[\Lambda] \cap D_{\mm}[\Xi] \end{aligned} $$
$I$ is an arbitrary ideal
$ D_{\kappa(\mm)}[I] = D_{\kappa(\mm)}[I_\mm \cap R] $
$I$ is an ideal if and only if $D_\mm[I]$ is a local dual space
$\Lambda$ is a local dual space if and only if $I_\mm[\Lambda]$ is an ideal.
$$I \subseteq J \implies D_\mm[I] \supseteq D_\mm[J] \qquad \Lambda \subseteq \Xi \implies I_\mm[\Lambda] \supseteq I_\mm[\Xi] $$
If $I$, $J$ ideals, $\Lambda, \Xi$ local dual spaces, then $$ \begin{aligned} D_{\mm}[I \cap J] = D_{\mm}[I] + D_{\mm}[J] && D_{\mm}[I + J] = D_{\mm}[I] \cap D_{\mm}[J] \\ I_{\mm}[\Lambda \cap \Xi] = I_{\mm}[\Lambda] + I_{\mm}[\Xi] && I_{\mm}[\Lambda + \Xi] = I_{\mm}[\Lambda] \cap D_{\mm}[\Xi] \end{aligned} $$
$$D_\mm[\mm^k] = \{ D \in W_{\kappa(\mm)} \colon \deg(D) < k \}$$
Let $\pp \subset R = \KK[x_1,\dotsc,x_n]$ be a prime.
Let $\tt = \{x_{i_1}, \dotsc, x_{i_d}\}$ denote a maximal set of algebraically independent variables in $R/\pp$,
let $\yy = \{x_{j_1}, \dotsc, x_{j_c}\}$ denote the rest.
Relabel the variables so that $R = \KK[\tt, \yy]$.
Denote by $\cdot^\ttt$ the localization at the multiplicatively closed set $\KK[\tt] \setminus \{0\}$.
$$ R^\ttt = \KK(\tt)[\yy] $$
$ \pp^\ttt $ is a maximal ideal in $R^\ttt$
$ \kappa(\pp^\ttt) = R^\ttt/\pp^\ttt $ is isomorphic to the residue field $ \kappa(\pp) = (R/\pp)_\pp $
$$ R^\ttt = \KK(\tt)[\yy] $$
$ \pp^\ttt $ is a maximal ideal in $R^\ttt$
$ \kappa(\pp^\ttt) = R^\ttt/\pp^\ttt $ is isomorphic to the residue field $ \kappa(\pp) = (R/\pp)_\pp $
Study the local dual space $$ D_{\pp^\ttt}[I^\ttt] \subseteq W_{\kappa(\pp^\ttt)}$$
$R = \QQ[t,x,y]$
$I = (x^2, y-tx)$ is a $\pp = (x,y)$-primary ideal.
The set $\{t\}$ is a maximal set of independent variables.
$\kappa(\pp) = \QQ(t)$
$$ D_{\pp^\ttt}[I^\ttt] = \Span_{\kappa(\pp)} \left\{ 1,~\partial_y,~\partial_y^2 - \frac{2}{t}\partial_x,~\partial_y^3+\frac{6}{t}\partial_x\partial_y \right\} $$
$ = \Span_{\kappa(\pp)} \left\{ 1,~\partial_y,~t\partial_y^2 - 2\partial_x,~t\partial_y^3+6\partial_x\partial_y \right\} $
$ I = (y^4, xy^3, x^3y^2)$ $ = (y^2) \cap (x^3,\,y^4,\,x^3y^2)$
Noetherian operators:
$\pp_1 = (y), \DD = \{1,\partial_y\}$
$\pp_2 = (x,y)$
$$\begin{aligned}\DD = \{& 1, \partial_x, \partial_x^2, \\ & \partial_y, \partial_y\partial_x, \partial_y\partial_x^2, \\ & \partial_y^2, \partial_y^2\partial_x, \partial_y^2\partial_x^2, \partial_y^3 \} \end{aligned}$$
$ I = (y^4, xy^3, x^3y^2)$ $ = (y^2) \cap (x^3,\,y^4,\,x^3y^2)$
Noetherian operators:
$\pp_1 = (y), \DD = \{1,\partial_y\}$
$\pp_2 = (x,y)$
$$\begin{aligned}\DD = \{& 1, \partial_x, \partial_x^2, \\ & \partial_y, \partial_y\partial_x, \partial_y\partial_x^2, \\ & \partial_y^2, \partial_y^2\partial_x, \partial_y^2\partial_x^2, \partial_y^3 \} \end{aligned}$$
$D_{(x,y)}[I]$ $D_{(x,y)}[(y^2)]$
$ I = (y^4, xy^3, x^3y^2)$ $ = (y^2) \cap (x^3,\,y^4,\,x^3y^2)$
Noetherian operators:
$\pp_1 = (y), \DD = \{1,\partial_y\}$
$\pp_2 = (x,y)$
$$\begin{aligned}\DD = \{& \partial_y^2, \partial_y^2\partial_x, \partial_y^2\partial_x^2, \partial_y^3 \} \end{aligned}$$
$D_{(x,y)}[I]$ $D_{(x,y)}[(y^2)]$
Let $I \subseteq R$, $\pp$ an associated prime, $\tt$ a maximal set of independent variables.
Let $J = I_\pp \cap R$ be the $\pp$-closure of $I$.
$$ J = Q \cap (J \colon \pp^\infty) $$
$$ D_{\pp^\ttt}[J^\ttt] = D_{\pp^\ttt}[Q^\ttt] + D_{\pp^\ttt}[(J \colon \pp^\infty)^\ttt] $$
$$ D_{\pp^\ttt}[I^\ttt] = D_{\pp^\ttt}[Q^\ttt] + D_{\pp^\ttt}[(I \colon \pp^\infty)^\ttt] $$
$ \implies $ $ \frac{D_{\pp^\ttt}[I^\ttt]}{D_{\pp^\ttt}[(I \colon \pp^\infty)^\ttt]} $ is a finite dimensional $\kappa(\pp)$-vector space.
Let $I \subseteq R$, $\pp$ an associated prime, $\tt$ a maximal set of independent variables.
The excess dual space of $I$ at $\pp$ is the finite dimensional $\kappa(\pp)$-vector space $ \frac{D_{\pp^\ttt}[I^\ttt]}{D_{\pp^\ttt}[(I \colon \pp^\infty)^\ttt]} $.
Let $I \subseteq R$ be an ideal.
A differential primary decomposition is a list of triples
$$ \{(\pp, \tt_\pp, \DD_\pp) \}_{\pp \in \Ass(I)} $$
such that the images of $\DD_\pp \in W_{\kappa(\pp^\ttp)}$ span the excess dual space.
Let $I \subseteq R$ be an ideal.
A differential primary decomposition is a list of triples
$$ \{(\pp, \tt_\pp, \DD_\pp) \}_{\pp \in \Ass(I)} $$
such that the images of $\DD_\pp \in W_{\kappa(\pp^\ttp)}$ span the excess dual space.
$ I = \{ f \in R \colon D \bullet f = 0 \text{ for all } D \in \DD_{\mathfrak{p}},\, \pp \in \Ass(I) \} $
Let $I \subseteq R$ be an ideal.
A differential primary decomposition is a list of triples
$$ \{(\pp, \tt_\pp, \DD_\pp) \}_{\pp \in \Ass(I)} $$
such that the images of $\DD_\pp \in W_{\kappa(\pp^\ttp)}$ span the excess dual space.
$ I = \{ f \in R \colon D \bullet f = 0 \text{ for all } D \in \DD_{\mathfrak{p}},\, \pp \in \Ass(I) \} $
Let $I = (x(y-z), x^2z, x^3)$: a plane $x=0$ with an embedded line $x=y-z = 0$ with a further embedded point at the origin.
$$
\begin{Bmatrix}
((x), & \{y,z\}, & \{1\}), \\
((x,y-z), & \{z\}, & \{\partial_x\}), \\
((x,y,z), & \emptyset, & \{\partial_x^2\})
\end{Bmatrix}
$$
Let $I = (x(y-z), x^2z, x^3)$: a plane $x=0$ with an embedded line $x=y-z = 0$ with a further embedded point at the origin.
$$
\begin{Bmatrix}
((x), & \{y,z\}, & \{1\}), \\
((x,y-z), & \{z\}, & \{\partial_x\}), \\
((x,y,z), & \emptyset, & \{\partial_x^2\})
\end{Bmatrix}
$$
J. Chen, Y. Cid-Ruiz, M. Härkönen, R. Krone, and A. Leykin, Noetherian operators in Macaulay2, 2021. arXiv:2101.01002.
Everything translates to $R$-submodules $U \subseteq R^k$!
Everything translates to $R$-submodules $U \subseteq R^k$!
If $D \in W_{\kappa(\mm)}^k$, $f \in R^k$, then
$$ \begin{aligned} U &\mapsto D_{\pp^\ttt}[U^\ttt] \subseteq (W_{\kappa(\pp^\ttt)})^k \\
\Lambda &\mapsto I_{\pp^\ttt}[\Lambda] \cap R^k \end{aligned}$$
Let $$ U = \im_R \begin{bmatrix}0 & x^2 & xy^2 \\ x & 0 & -2y^2 \end{bmatrix} $$ Let $$ U = \im_R \begin{bmatrix}0 & x^2 & xy^2 \\ x & 0 & -2y^2 \end{bmatrix} $$ Let $$ U = \im_R \begin{bmatrix}0 & x^2 & xy^2 \\ x & 0 & -2y^2 \end{bmatrix} $$
$\left[\begin{smallmatrix}f \\ g \end{smallmatrix} \right] \in R^2$ belongs to $U$ if and only ifDefinition
For each $\pp \in \Ass(I)$ let $\tt_\pp$ be a maximal set of independent variables over $\pp$.
Definition
For each $\pp \in \Ass(I)$ let $\tt_\pp$ be a maximal set of independent variables over $\pp$.
Proposition
Definition
For each $\pp \in \Ass(I)$ let $\tt_\pp$ be a maximal set of independent variables over $\pp$.
Proposition
Theorem
$ \{(\pp, \tt_\pp, \DD_\pp) \}_{\pp \in \Ass(I)} $ is a differential primary decomposition if and only if, for each $\pp \in \Ass(I)$
$$ I_\pp \cap R = \{ f \in R \colon D \bullet f = 0 \text{ for all } D \in \DD_{\mathfrak{q}},\, \pp \supseteq {\mathfrak{q}} \in \Ass(I) \} $$
Example
Macaulay2, version 1.19.1.1
i1 : needsPackage "NoetherianOperators";
i2 : R = QQ[x,y];
i3 : I = ideal(x*y-x*z,x^2*z,x^3);
i4 : differentialPrimaryDecomposition I
o4 = {{ideal x, {| 1 |}}, {ideal (y - z, x), {| dx |}}, {ideal (z, y, x), {| dx^2 |}}}
o4 : List
Example
Macaulay2, version 1.19.1.1
i1 : needsPackage "NoetherianOperators";
i2 : R = QQ[x,y];
i3 : I = ideal(x*y-x*z,x^2*z,x^3);
i4 : differentialPrimaryDecomposition I
o4 = {{ideal x, {| 1 |}}, {ideal (y - z, x), {| dx |}}, {ideal (z, y, x), {| dx^2 |}}}
o4 : List
J. Chen, M. Härkönen, R. Krone, and A. Leykin, “Noetherian operators and primary decomposition,” J. Symbolic Comput., vol. 110, 2022.
Modules
Modules
$ D \bullet f = \sum_{i=1}^k D_i \bullet f_i $
Example
Example
i1 : needsPackage "NoetherianOperators";
i2 : R = QQ[x,y];
i3 : U = image matrix {{0, x^2, x*y^2}, {x, 0, -2*y^2}}
o3 = image | 0 x2 xy2 |
| x 0 -2y2 |
2
o3 : R-module, submodule of R
i4 : differentialPrimaryDecomposition U
o4 = {{ideal x, {| 1 |, | 2dx |}}, {ideal (y, x), {| dx |, | 0 |}}}
| 0 | | 1 | | 0 | | dy |
Example
i1 : needsPackage "NoetherianOperators";
i2 : R = QQ[x,y];
i3 : U = image matrix {{0, x^2, x*y^2}, {x, 0, -2*y^2}}
o3 = image | 0 x2 xy2 |
| x 0 -2y2 |
2
o3 : R-module, submodule of R
i4 : differentialPrimaryDecomposition U
o4 = {{ideal x, {| 1 |, | 2dx |}}, {ideal (y, x), {| dx |, | 0 |}}}
| 0 | | 1 | | 0 | | dy |
Let $$ U = \im_R \begin{bmatrix}0 & x^2 & xy^2 \\ x & 0 & -2y^2 \end{bmatrix} $$
i1 : needsPackage "NoetherianOperators";
i2 : R = QQ[x,y];
i3 : U = image matrix {{0, x^2, x*y^2}, {x, 0, -2*y^2}}
o3 = image | 0 x2 xy2 |
| x 0 -2y2 |
2
o3 : R-module, submodule of R
i4 : differentialPrimaryDecomposition U
o4 = {{ideal x, {| 1 |, | 2dx |}}, {ideal (y, x), {| dx |, | 0 |}}}
| 0 | | 1 | | 0 | | dy |
$\left[\begin{smallmatrix}f \\ g \end{smallmatrix} \right] \in R^2$ belongs to $U$ if and only if
J. Chen and Y. Cid-Ruiz, “Primary decomposition of modules: A computational differential approach,” Journal of Pure and Applied Algebra, 2022.
R. Ait El Manssour, M. Härkönen, and B. Sturmfels, “Linear PDE with constant coefficients,” Glasgow Mathematical Journal, First View, 2021.
Let $R = \CC[x_1,\dotsc,x_n] = \CC[\partial_{z_1}, \dotsc, \partial_{z_n}]$.
A $\ell \times k$ matrix with entries in $R$ describes a system of $\ell$ linear homogeneous PDE with constant coefficients
Its solution is an unknown function
$v(z_1,\dotsc,z_n) \colon \RR^n \to \CC^k$
Let $R = \CC[x_1,\dotsc,x_n] = \CC[\partial_{z_1}, \dotsc, \partial_{z_n}]$.
A $\ell \times k$ matrix with entries in $R$ describes a system of $\ell$ linear homogeneous PDE with constant coefficients
Its solution is an unknown function
$v(z_1,\dotsc,z_n) \colon \RR^n \to \CC^k$
$\ell = 3, k = 2 $
$ M = \begin{bmatrix} 0 & x_1 \\ x_1^2 & 0 \\ x_1 x_2^2 & -2x_2^2 \end{bmatrix} $
$ M \bullet v = 0 $ means finding $ v(z_1,z_2) \colon \RR^2 \to \CC^2 $ such that $$ \begin{gathered} \partial_{z_1} \bullet v_2 = 0 \\ \partial_{z_1}^2 \bullet v_1 = 0 \\ \partial_{z_1}\partial_{z_2}^2 \bullet v_1 - 2 \partial_{z_2}^2 \bullet v_2 = 0 \end{gathered} $$
Let $\ff$ be an $R$-module of functions, $M \in R^{\ell \times k}$.
The solution space $$ \Sol_\ff(M) = \{v \in \ff^k \colon M \bullet v = 0 \} $$ is an $R$-module.
It only depends on the module $U = \im_R M^T \subseteq R^k$
The set of compactly supported smooth functions is an injective $R$-module
The set of compactly supported smooth functions is an injective $R$-module
$$ R^{k'} \xrightarrow{S} R^k \xrightarrow{M} R^\ell $$
$$ R^{k'} \otimes_R C_c^\infty \xrightarrow{S \otimes 1} R^k \otimes_R C_c \xrightarrow{M \otimes 1} R^\ell \otimes_R C_c^\infty $$
$$ (C_c^\infty)^{k'} \xrightarrow{S} (C_c^\infty)^k \xrightarrow{M} (C_c^\infty)^\ell $$
$$\Sol_{C_c^\infty}(M) = \im_{C_c^\infty}(S) = \{ S \bullet u \colon u \in (C_c^\infty)^{k'} \} $$
$ v'''(z) - 3v''(z) + 4 = 0 $
Characteristic polynomial
$ x^3 - 3x^2 - 4 = 0 $
Characteristic polynomial
$ (x-2)^2(x+1) = 0 $
Solutions
$ e^{2z}, ze^{2z}$
$ e^{-z} $
Local dual spaces $$\begin{aligned} x=2&: & \langle 1, \partial_x \rangle\\ x=-1&: & \langle 1 \rangle \end{aligned}$$
$ v'''(z) - 3v''(z) + 4 = 0 $
Characteristic polynomial
$ (x-2)^2(x+1) = 0 $
Solutions
$ e^{2z}, ze^{2z}$
$ e^{-z} $
Local dual spaces $$\begin{aligned} x=2&: & \langle 1, \partial_x \rangle\\ x=-1&: & \langle 1 \rangle \end{aligned}$$
Let $U \subseteq R^k$ be an $R$-submodule, $\pp$ a prime.
The operator $D = D(x,\partial_x) \in D_{\pp^\ttt}[I^\ttt]$ if and only if
$$ D(x_0, z) \exp(x_0^T \cdot z) \in \Sol_\ff (U) $$
for (almost) all $x_0 \in V(\pp)$.
Let $\{(\pp, \tt_\pp, \DD_\pp)\}_{\pp \in \Ass(R^k/U)}$ be a differential primary decomposition for the $R$-submodule $U \subseteq R$. All distributional solutions $u \in \Sol_{\DD'}(U)$ are of the form $$ u(z) = \sum_{\pp \in \Ass(R^k/U)} \sum_{D \in \DD_\pp} \int_{V(\pp)} D(x,z) \exp(x^T \cdot z)\,\mathrm{d}\mu_{\pp,D}(x) $$ for a suitable set of measures $\mu_{\pp,D}$.
$$ M = \begin{bmatrix} 0 & x_1 \\ x_1^2 & 0 \\ x_1 x_2^2 & -2x_2^2 \end{bmatrix} $$ $$ U = \im_R M^T $$ Find $v \in \Sol_{\DD'}(M)$
$$ M = \begin{bmatrix} 0 & x_1 \\ x_1^2 & 0 \\ x_1 x_2^2 & -2x_2^2 \end{bmatrix} $$ $$ U = \im_R M^T $$ Find $v \in \Sol_{\DD'}(M)$
i1 : needsPackage "NoetherianOperators";
i2 : R = QQ[x,y];
i3 : U = image matrix {{0, x^2, x*y^2}, {x, 0, -2*y^2}}
o3 = image | 0 x2 xy2 |
| x 0 -2y2 |
2
o3 : R-module, submodule of R
i4 : solvePDE U
o4 = {{ideal x, {| 1 |, | 2dx |}}, {ideal (y, x), {| dx |, | 0 |}}}
| 0 | | 1 | | 0 | | dy |
$$ M = \begin{bmatrix} 0 & x_1 \\ x_1^2 & 0 \\ x_1 x_2^2 & -2x_2^2 \end{bmatrix} $$ $$ U = \im_R M^T $$ Find $v \in \Sol_{\DD'}(M)$
i1 : needsPackage "NoetherianOperators";
i2 : R = QQ[x,y];
i3 : U = image matrix {{0, x^2, x*y^2}, {x, 0, -2*y^2}}
o3 = image | 0 x2 xy2 |
| x 0 -2y2 |
2
o3 : R-module, submodule of R
i4 : solvePDE U
o4 = {{ideal x, {| 1 |, | 2dx |}}, {ideal (y, x), {| dx |, | 0 |}}}
| 0 | | 1 | | 0 | | dy |
$$ \begin{aligned} v(z_1,z_2) =& \int_{V(x_1)} \big(\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\big) e^{x_1z_1 + x_2z_2}\,\mathrm{d}\mu_1(x) + \int_{V(x_1)} \big(\begin{smallmatrix} 2z_1 \\ 1 \end{smallmatrix}\big) e^{x_1z_1 + x_2z_2}\,\mathrm{d}\mu_2(x) \\ &+ \int_{V(x_1,x_2)} \big(\begin{smallmatrix} z_1 \\ 0 \end{smallmatrix}\big) e^{x_1z_1 + x_2z_2}\,\mathrm{d}\mu_3(x) + \int_{V(x_1,x_2)} \big(\begin{smallmatrix} 0 \\ z_2 \end{smallmatrix}\big) e^{x_1z_1 + x_2z_2}\,\mathrm{d}\mu_4(x) \end{aligned} $$
$$ \begin{aligned} v(z_1,z_2) =& \int_{V(x_1)} \big(\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\big) e^{x_1z_1 + x_2z_2}\,\mathrm{d}\mu_1(x) + \int_{V(x_1)} \big(\begin{smallmatrix} 2z_1 \\ 1 \end{smallmatrix}\big) e^{x_1z_1 + x_2z_2}\,\mathrm{d}\mu_2(x) \\ &+ \big(\begin{smallmatrix} z_1 \\ 0 \end{smallmatrix}\big)c_3 + \int_{V(x_1,x_2)} \big(\begin{smallmatrix} 0 \\ z_2 \end{smallmatrix}\big) e^{x_1z_1 + x_2z_2}\,\mathrm{d}\mu_4(x) \end{aligned} $$
$$ \begin{aligned} v(z_1,z_2) =& \int_{V(x_1)} \big(\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\big) e^{x_1z_1 + x_2z_2}\,\mathrm{d}\mu_1(x) + \int_{V(x_1)} \big(\begin{smallmatrix} 2z_1 \\ 1 \end{smallmatrix}\big) e^{x_1z_1 + x_2z_2}\,\mathrm{d}\mu_2(x) \\ &+ \big(\begin{smallmatrix} z_1 \\ 0 \end{smallmatrix}\big)c_3 + \big(\begin{smallmatrix} 0 \\ z_2 \end{smallmatrix}\big)c_4 \end{aligned} $$
$$ \begin{aligned} v(z_1,z_2) =& \int_{\CC} \big(\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\big) e^{0z_1+x_2z_2}\,\mathrm{d}\mu_1(x_2) + \int_{\CC} \big(\begin{smallmatrix} 2z_1 \\ 1 \end{smallmatrix}\big) e^{0z_1+x_2z_2}\,\mathrm{d}\mu_2(x_2) \\ &+ \big(\begin{smallmatrix} z_1 \\ 0 \end{smallmatrix}\big)c_3 + \big(\begin{smallmatrix} 0 \\ z_2 \end{smallmatrix}\big)c_4 \end{aligned} $$
$$ \begin{aligned} v(z_1,z_2) =& \int_{\CC} \big(\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\big) e^{x_2z_2}\,\mathrm{d}\mu_1(x_2) + \int_{\CC} \big(\begin{smallmatrix} 2z_1 \\ 1 \end{smallmatrix}\big) e^{x_2z_2}\,\mathrm{d}\mu_2(x_2) \\ &+ \big(\begin{smallmatrix} z_1 \\ 0 \end{smallmatrix}\big)c_3 + \big(\begin{smallmatrix} 0 \\ z_2 \end{smallmatrix}\big)c_4 \end{aligned} $$
$$ \begin{aligned} v(z_1,z_2) =& \big(\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\big) \int_{\CC} e^{x_2z_2}\,\mathrm{d}\mu_1(x_2) + \big(\begin{smallmatrix} 2z_1 \\ 1 \end{smallmatrix}\big) \int_{\CC} e^{x_2z_2}\,\mathrm{d}\mu_2(x_2) \\ &+ \big(\begin{smallmatrix} z_1 \\ 0 \end{smallmatrix}\big)c_3 + \big(\begin{smallmatrix} 0 \\ z_2 \end{smallmatrix}\big)c_4 \end{aligned} $$
$$ \begin{aligned} v(z_1,z_2) =& \big(\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\big) \phi_1(z_2) + \big(\begin{smallmatrix} 2z_1 \\ 1 \end{smallmatrix}\big) \phi_2(z_2) \\ &+ \big(\begin{smallmatrix} z_1 \\ 0 \end{smallmatrix}\big)c_3 + \big(\begin{smallmatrix} 0 \\ z_2 \end{smallmatrix}\big)c_4 \end{aligned} $$
$$ \begin{aligned} v(z_1,z_2) = \begin{pmatrix} \phi_1(z_2) + 2z_1 \phi_2(z_2) + c_3 z_1 \\ \phi_2(z_2) + c_4z_2 \end{pmatrix} \end{aligned} $$ for some univariate functions $\phi_1,\phi_2 \colon \RR \to \CC$ and complex values $c_3,c_4$.
$$ M = \begin{bmatrix} 0 & x_1 \\ x_1^2 & 0 \\ x_1 x_2^2 & -2x_2^2 \end{bmatrix} $$ $$ U = \im_R M^T $$ Find $v \in \Sol_{\DD'}(M)$
i1 : needsPackage "NoetherianOperators";
i2 : R = QQ[x,y];
i3 : U = image matrix {{0, x^2, x*y^2}, {x, 0, -2*y^2}}
o3 = image | 0 x2 xy2 |
| x 0 -2y2 |
2
o3 : R-module, submodule of R
i4 : solvePDE U
o4 = {{ideal x, {| 1 |, | 2dx |}}, {ideal (y, x), {| dx |, | 0 |}}}
| 0 | | 1 | | 0 | | dy |
$$ \begin{aligned} v(z_1,z_2) = \begin{pmatrix} \phi_1(z_2) + 2z_1 \phi_2(z_2) + c_3 z_1 \\ \phi_2(z_2) + c_4z_2 \end{pmatrix} \end{aligned} $$ for some univariate functions $\phi_1,\phi_2 \colon \RR \to \CC$ and complex values $c_3,c_4$.
M. Härkönen, J. Hirsch, and B. Sturmfels, Making waves, 2021. arXiv:2111.14045.
Let $R = \KK[x_1,\dotsc,x_n]$, where $\KK = \RR$ or $\CC$.
Let $\ff = \DD'$, the space of distributions.
Let $M \in R^{\ell \times k}$ have homogeneous rows.
We say that $M$ has $\KK$-constant rank $r$ if $\rank_\KK M(x) = r$ for all $x \in \KK^m \setminus \{0\}$.
Let $M \in R^{\ell \times k}$ and let $S$ be the syzygy matrix of $M$.
Then there is an operator $M_1$ such that
$$ \Sol_\ff(M) = \im_\ff S + \Sol_\ff(M_1) $$
where $\Sol_\ff(M_1)$ contains no compactly supported distributions.
$$ \Sol_\ff(M) = \im_\ff S + \Sol_\ff(M_1) \\ v = S\bullet u + w $$
$$ \Sol_\ff(M) = \im_\ff S + \Sol_\ff(M_1) \\ v = S\bullet u + w $$
If $M$ has $\KK$-constant rank (where $\KK$ is either $\CC$ or $\RR$), then $M_1$ is $\KK$-elliptic.
$$ \Sol_\ff(M) = \im_\ff S + \Sol_\ff(M_1) \\ v = S\bullet u + w $$
If $M$ has $\KK$-constant rank (where $\KK$ is either $\CC$ or $\RR$), then $M_1$ is $\KK$-elliptic.
We say that $M$ is $\KK$-elliptic if $\ker_\KK M(x) = \{0\}$ for all $x \in \KK^m \setminus \{0\}$.
$$ \Sol_\ff(M) = \im_\ff S + \Sol_\ff(M_1) \\ v = S\bullet u + w $$
If $M$ has $\KK$-constant rank (where $\KK$ is either $\CC$ or $\RR$), then $M_1$ is $\KK$-elliptic.
We say that $M$ is $\KK$-elliptic if $\ker_\KK M(x) = \{0\}$ for all $x \in \KK^m \setminus \{0\}$.
If $M$ is $\RR$-elliptic, solutions to $M \bullet w = 0$ are smooth.
If $M$ is $\CC$-elliptic, solutions to $M \bullet w = 0$ are polynomials.
$$ \Sol_\ff(M) = \im_\ff S + \Sol_\ff(M_1) \\ v = S\bullet u + w $$
If $M$ has $\KK$-constant rank (where $\KK$ is either $\CC$ or $\RR$), then $M_1$ is $\KK$-elliptic.
We say that $M$ is $\KK$-elliptic if $\ker_\KK M(x) = \{0\}$ for all $x \in \KK^m \setminus \{0\}$.
If $M$ is $\RR$-elliptic, solutions to $M \bullet w = 0$ are smooth.
If $M$ is $\CC$-elliptic, solutions to $M \bullet w = 0$ are polynomials.
M. Härkönen, B. Raiță, and L. Nicklasson, Syzygies, constant rank, and beyond, 2021. arXiv:2112.12663.
Homework: Solve the PDE
Hint:
needsPackage "NoetherianOperators";
viewHelp(solvePDE)
Let $$ M = \begin{bmatrix} x_1 & x_2 & x_3 \\ x_2 & x_1 & x_4 \\ x_3 & x_4 & x_1 \end{bmatrix} $$
i9 : R = QQ[x_1,x_2,x_3,x_4];
i10 : M = matrix{{x_1, x_2, x_3},{x_2, x_1, x_4},{x_3,x_4,x_1}};
3 3
o10 : Matrix R <--- R
i11 : U = image transpose M;
Let $$ M = \begin{bmatrix} x_1 & x_2 & x_3 \\ x_2 & x_1 & x_4 \\ x_3 & x_4 & x_1 \end{bmatrix} $$
i9 : R = QQ[x_1,x_2,x_3,x_4];
i10 : M = matrix{{x_1, x_2, x_3},{x_2, x_1, x_4},{x_3,x_4,x_1}};
3 3
o10 : Matrix R <--- R
i11 : U = image transpose M;
i17 : solvePDE U
3 2 2 2
o17 = {{ideal(x - x x - x x + 2x x x - x x ), {| -x_1^2x_2x_3+x_1x_2^2x_4+x_1x_3^2x_4-x_2x_3x_4^2 |}}}
1 1 2 1 3 2 3 4 1 4 | x_1x_2^2x_3-x_1^2x_2x_4-x_2x_3^2x_4+x_1x_3x_4^2 |
| x_1x_2x_3^2-x_1^2x_3x_4-x_2^2x_3x_4+x_1x_2x_4^2 |
o17 : List
Let $$ M = \begin{bmatrix} x_1 & x_2 & x_3 \\ x_2 & x_1 & x_4 \\ x_3 & x_4 & x_1 \end{bmatrix} $$
$$ \phi(z_1,z_2,z_3,z_3) = \int_V \begin{bmatrix} -x_1^2x_2x_3+x_1x_2^2x_4+x_1x_3^2x_4-x_2x_3x_4^2 \\ x_1x_2^2x_3-x_1^2x_2x_4-x_2x_3^2x_4+x_1x_3x_4^2 \\ x_1x_2x_3^2-x_1^2x_3x_4-x_2^2x_3x_4+x_1x_2x_4^2 \end{bmatrix} e^{x_1z_1 + \dotsb + x_4z_4} \,\mathrm{d}\mu(x)$$
$$V = V(x_1^3 - x_1x_2^2 - x_1x_3^2 - x_1x_4^2 + 2x_2x_3x_4) $$
Let $$ M = \begin{bmatrix} x_1 & x_2 & x_3 \\ x_2 & x_1 & x_4 \\ x_3 & x_4 & x_1 \end{bmatrix} $$
$$ \phi(z_1,z_2,z_3,z_3) = \int_V \begin{bmatrix} -x_1^2x_2x_3+x_1x_2^2x_4+x_1x_3^2x_4-x_2x_3x_4^2 \\ x_1x_2^2x_3-x_1^2x_2x_4-x_2x_3^2x_4+x_1x_3x_4^2 \\ x_1x_2x_3^2-x_1^2x_3x_4-x_2^2x_3x_4+x_1x_2x_4^2 \end{bmatrix} e^{x_1z_1 + \dotsb + x_4z_4} \,\mathrm{d}\mu(x)$$
$$V = V(x_1^3 - x_1x_2^2 - x_1x_3^2 - x_1x_4^2 + 2x_2x_3x_4) $$
$$\pi = \Span_\RR\left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}\right\} \subset V$$
Let $$ M = \begin{bmatrix} x_1 & x_2 & x_3 \\ x_2 & x_1 & x_4 \\ x_3 & x_4 & x_1 \end{bmatrix} $$
$$ \phi(z_1,z_2,z_3,z_3) = \int_\pi \begin{bmatrix} -x_1^2x_2x_3+x_1x_2^2x_4+x_1x_3^2x_4-x_2x_3x_4^2 \\ x_1x_2^2x_3-x_1^2x_2x_4-x_2x_3^2x_4+x_1x_3x_4^2 \\ x_1x_2x_3^2-x_1^2x_3x_4-x_2^2x_3x_4+x_1x_2x_4^2 \end{bmatrix} e^{x_1z_1 + \dotsb + x_4z_4} \,\mathrm{d}\mu(x)$$
$$\pi = \Span_\RR\left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}\right\} \subset V$$
Let $$ M = \begin{bmatrix} x_1 & x_2 & x_3 \\ x_2 & x_1 & x_4 \\ x_3 & x_4 & x_1 \end{bmatrix} $$
$$ \phi(z_1,z_2,z_3,z_3) = \int_{\CC^2} \begin{bmatrix} -x_1^2x_2x_3+x_1x_2^2x_4+x_1x_3^2x_4-x_2x_3x_4^2 \\ x_1x_2^2x_3-x_1^2x_2x_4-x_2x_3^2x_4+x_1x_3x_4^2 \\ x_1x_2x_3^2-x_1^2x_3x_4-x_2^2x_3x_4+x_1x_2x_4^2 \end{bmatrix} e^{x_1z_1 + \dotsb + x_4z_4} \,\mathrm{d}\mu(x)$$
$$\pi = \Span_\RR\left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}\right\} \subset V$$
$$ \mm \xrightarrow{\pp} R^k $$