\begin{gather*} \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 g}{\partial x \partial y} = 0 \\ \frac{\partial^2 f }{\partial y \partial z } + \frac{\partial^2 g}{\partial z^2} = 0 \\ \frac{\partial^3 f }{\partial x^2 \partial z } + \frac{\partial^3 g}{\partial z \partial y \partial w} = 0 \end{gather*}
Marc Härkönen
Seminar on Nonlinear Algebra, June 11 2021
Study the ideal $$ I = (z^2, (x-y)^2-2xz, zy(x-y)) $$
Find the points $(x,y,z)$ satisfying \begin{align*} z^2 = (x-y)^2-2xz = zy(x-y) = 0 \end{align*}
Answer: the line $z = 0$, $x = y$.
Compute a primary decomposition of $$ I = (z^2, (x-y)^2-2xz, zy(x-y)) $$
Answer: $$\small I = (z^2, (x-y)z, (x-y)^2-2yz) \\ \cap \\ (y,z^2, x^2-2xz)$$
Compute a primary decomposition of $$ I = (z^2, (x-y)^2-2xz, zy(x-y)) $$
Answer: $$\small I = (z^2, (x-y)z, (x-y)^2-2yz) \\ \cap \\ (y,z^2, x^2-2xz)$$
Triple line $z=0, x=y$,
embedded point of length 1 at the origin.
Describe $$ I = (z^2, (x-y)^2-2xz, zy(x-y)) $$ using differential equations.
Answer: $$ f(x,y,z) = \alpha(x+y) + \\ x\beta(x+y) + \\x^2 \gamma'(x+y) + z \gamma(x+y) +\\ c\cdot(x^2+xz) $$ where $\alpha,\beta,\gamma$ are univariate functions, $c$ a constant
Linear partial differential operators with constant coefficients are encoded as vectors in $R^k = \mathbb{C}[\partial_1, \dotsc, \partial_n]^k$.
A set of $l$ partial differential operators is encoded by a $k \times l$ matrix $M$ with entries in $R$.
A function $f \in \mathcal{D}'^k$ satisfies the PDE $M$ if $M_i \bullet f = 0$ for all $l$ columns $M_i$ of $M$.
A function $f \in \mathcal{D}'^k$ satisfies the PDE $M$ if $M_i \bullet f = 0$ for all $l$ columns $M_i$ of $M$.
$$ M = \begin{bmatrix} \partial_x^2 & \partial_x\partial_y & \partial_y^2 + \partial_x\\ \partial_x+1 & \partial_y^2 & -\partial_x + 1 \end{bmatrix} $$ corresponds to the PDE $$ \frac{\partial^2 f_1}{\partial x^2} + \frac{\partial f_2}{\partial x} + f_2 = 0 \\ \frac{\partial^2 f_1}{\partial x \partial y} + \frac{\partial^2 f_2}{\partial y^2} = 0\\ \frac{\partial^2 f_1}{\partial y^2} + \frac{\partial f_1}{\partial x} - \frac{\partial f_2}{\partial x}+f_2 = 0 $$
One solution (among infinitely many) is $$ \begin{bmatrix} f_1(x,y) \\ f_2(x,y) \end{bmatrix} = \begin{bmatrix} -\cos x - \sin x \\ - \sin x \end{bmatrix} $$
PDE $\iff$ Matrix $\iff$ Submodule of $R^k$.
If $U \subseteq R^k$, define the $R$-module of solutions $$\mathrm{Sol}(U) := \{f \in \mathcal{D}' \mid m \bullet f =0 \, \forall m \in U \}$$
Simple algebra
Suppose $U$ is generated by the columns of matrix $M$. Let $S$ be the matrix whose image is the module of relations between rows of $M$
$$ R^l \xleftarrow{M^T} R^k \xleftarrow{S} R^{k_1}$$
Then $S^T \bullet \mathcal{D}'^{k_1} \subset \mathrm{Sol}(U)$, and
$S^T \bullet \mathcal{D}'^{k_1} = \mathrm{Sol}(U)$ if $R^k/U$ is torsion free.
Let $M = \mathrm{curl} = \begin{bmatrix} -\partial_y & 0 & -\partial_z \\ \partial_x & -\partial_z & 0 \\ 0 & \partial_y & \partial_x \end{bmatrix}$
$$ R^3 \xleftarrow{\begin{bmatrix} -\partial_y & \partial_x & 0 \\ 0 & -\partial_z & \partial_y \\ -\partial_z & 0 & \partial_x \end{bmatrix}} R^3 \xleftarrow{\begin{bmatrix} \partial_x \\ \partial_y \\ \partial_z \end{bmatrix}} R^1 $$
The operator $\begin{bmatrix} \partial_x & \partial_y & \partial_z \end{bmatrix}$ is the gradient operator.
Furthermore, $R^3/\mathrm{Im}_R(M)$ is torsion-free.
Curl-free functions are precisely gradients
$\mathrm{curl} f = 0 \implies f = \nabla g$ for some function $g$.
Given $U \subseteq R^k$, how do we get all of $\mathrm{Sol}(U)$?
There exist varieties $\{V_i\}$ and polynomial vectors $\{B_{i,j}(\mathbf{x},\mathbf{z})\}$ such that every solution $f \in \mathrm{Sol}(U)$ is written as an integral
for some measures $\{\mu_{i,j}\}$.
find the varieties $V_i$ and polynomials $B_{i,j}(\mathbf{x},\mathbf{z})$
find the varieties $V_i$ and polynomials $B_{i,j}(\mathbf{x},\mathbf{z})$
Ehrenpreis-Palamodov:
These are the varieties corresponding to associated primes of $R^k/U$
Macaulay2, version 1.18.0.1
i1 : R = QQ[x,y,z];
i2 : M = matrix {{x^2,x*y},{x+1,y^2}}
o2 = | x2 xy |
| x+1 y2 |
2 2
o2 : Matrix R <--- R
i3 : associatedPrimes coker M
o3 = {ideal y, ideal x, ideal(x*y - x - 1)}
o3 : List
find the varieties $V_i$ and polynomials $B_{i,j}(\mathbf{x},\mathbf{z})$
We call the $B_{ij}(\mathbb{x},\mathbb{z})$ Noetherian multipliers
Denote $R = \mathbb{C}[\partial_{z_1}, \dotsc, \partial_{z_n}] := \mathbb{C}[x_1,\dotsc,x_n]$. Find the differential operators $B_{i,j}(\mathbf{x}, \partial_\mathbf{x})$ such that $$ f \in U \iff B_{i,j} \bullet f \in P_i \text { for all } P_i \in \mathrm{Ass}(R^k/U)$$
We call the $B_{ij}(\mathbb{x},\partial_x)$ Noetherian operators
Describe $$ I = (z^2, (x-y)^2-2xz, zy(x-y)) $$ using differential equations.
Distributed with Macaulay2 from version 1.18 in the package NoetherianOperators
Macaulay2, version 1.18.0.1
i1 : needsPackage "NoetherianOperators";
i2 : R = QQ[x_1,x_2];
i3 : U = image matrix {{x_1^2-4*x_1*x_2-x_2, x_1^2*x_2-x_2^2, x_1^3-x_1*x_2}, {2*x_1^2-2*x_2, 0, 0}}
o3 = image | x_1^2-4x_1x_2-x_2 x_1^2x_2-x_2^2 x_1^3-x_1x_2 |
| 2x_1^2-2x_2 0 0 |
2
o3 : R-module, submodule of R
i4 : differentialPrimaryDecomposition U
2
o4 = {{ideal(x - x ), {| 0 |, | 1 |}}, {ideal (x , x ), {| -2dx_2 |}}}
1 2 | 1 | | x_2dx_1 | 2 1 | dx_2 |
o4 : List
Associated primes $P_1 = (x_1^2 - x_2)$, $P_2 = (x_1,x_2)$.
$(p_1,p_2) \in U$ if and only if
$U = U_1 \cap U_2$ is a primary decomposition, where $$ U_1 = \{p \in R^2 \mid B_{1,1} \bullet p \in P_1, B_{1,2} \bullet p \in P_1\}$$ $$ U_2 = \{p \in R^2 \mid B_{2,1} \bullet p \in P_2\}$$
Macaulay2, version 1.18.0.1
i1 : needsPackage "NoetherianOperators";
i2 : R = QQ[x_1,x_2];
i3 : U = image matrix {{x_1^2-4*x_1*x_2-x_2, x_1^2*x_2-x_2^2, x_1^3-x_1*x_2}, {2*x_1^2-2*x_2, 0, 0}}
o3 = image | x_1^2-4x_1x_2-x_2 x_1^2x_2-x_2^2 x_1^3-x_1x_2 |
| 2x_1^2-2x_2 0 0 |
2
o3 : R-module, submodule of R
i4 : solvePDE U
2
o4 = {{ideal(x - x ), {| 0 |, | 1 |}}, {ideal (x , x ), {| -2dx_2 |}}}
1 2 | 1 | | x_2dx_1 | 2 1 | dx_2 |
o4 : List
i5 : netList oo
+--------------+--------------------+
| 2 | |
o5 = |ideal(x - x )|{| 0 |, | 1 |}|
| 1 2 | | 1 | | x_2dx_1 | |
+--------------+--------------------+
|ideal (x , x )|{| -2dx_2 |} |
| 2 1 | | dx_2 | |
+--------------+--------------------+
Solving PDEs:
the $x_i$ variables correspond to $\partial_{z_i}$,
the $z_i$ variables correspond to $\partial_{z_i}$.
Varieties: $V_1 = V(x_1^2 - x_2)$, $V_2 = V(x_1,x_2)$.
Noetherian multipliers $B_{1,1} = (0, 1)^T$, $B_{1,2} = (1, x_1z_1)^T$, $B_{2,1} = (-2z_2, z_2)^T$.
Solutions: \begin{align*} \begin{bmatrix} f_1(z_1,z_2) \\ f_2(z_1,z_2) \end{bmatrix} =& \int_{V_1} \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{x_1z_1 + x_2z_2} \, d\mu_{1,1}(x_1,x_2) \\ &+\int_{V_1} \begin{bmatrix} 1 \\ x_1z_1 \end{bmatrix} e^{x_1z_1 + x_2z_2} \, d\mu_{1,2}(x_1,x_2)\\ &+\int_{V_2} \begin{bmatrix} -2z_2 \\ z_2 \end{bmatrix} e^{x_1z_1 + x_2z_2} \, d\mu_{2,1}(x_1,x_2) \end{align*}
Solutions: \begin{align*} \begin{bmatrix} f_1(z_1,z_2) \\ f_2(z_1,z_2) \end{bmatrix} =& \int_{V_1} \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{x_1z_1 + x_2z_2} \, d\mu_{1,1}(x_1,x_2) \\ &+\int_{V_1} \begin{bmatrix} 1 \\ x_1z_1 \end{bmatrix} e^{x_1z_1 + x_2z_2} \, d\mu_{1,2}(x_1,x_2)\\ &+c\begin{bmatrix} -2z_2 \\ z_2 \end{bmatrix} \end{align*}
Solutions: \begin{align*} \begin{bmatrix} f_1(z_1,z_2) \\ f_2(z_1,z_2) \end{bmatrix} =& \begin{bmatrix} 0 \\ 1 \end{bmatrix} \int_{V_1} e^{x_1z_1 + x_2z_2} \, d\mu_{1,1}(x_1,x_2) \\ &+\begin{bmatrix} 1 \\ \partial_{z_1}z_1 \end{bmatrix} \int_{V_1} e^{x_1z_1 + x_2z_2} \, d\mu_{1,2}(x_1,x_2)\\ &+c\begin{bmatrix} -2z_2 \\ z_2 \end{bmatrix} \end{align*}
A wave is a function that is constant along affine spaces
If $f \colon \mathbb{R}^\ell \to \mathbb{C}^k$ is any $n-\ell$-variate function, then $f(\xi_1 \cdot x, \dotsc, \xi_{n-\ell} \cdot x)$ is a wave for all $\xi_i \in \mathbb{R}^k$, constant on $\ell$-dimensional hyperplanes.
Suppose $M \in \mathbb{C}[\partial_1,\dotsc,\partial_n]^{k\times l}$ has entries that are homogeneous of the same degree.
The solutions are $k$-vectors
Suppose we want to find solutions of the form $$ vf(\xi_1\cdot x, \dotsc, \xi_{n-\ell} \cdot x), $$ where $v \in \mathbb{P}^{k-1}$, $\xi_i \in \mathbb{P}^{n-1}$, and $f \colon \mathbb{R}^{n-\ell} \to \mathbb{C}$
Suppose we want to find solutions of the form $$ vf(\xi_1\cdot x, \dotsc, \xi_{n-\ell} \cdot x), $$ where $v \in \mathbb{P}^{k-1}$, $\xi_i \in \mathbb{P}^{n-1}$, and $f \colon \mathbb{R}^{n-\ell} \to \mathbb{C}$
We need $$ v \in \mathcal{N}^\ell := \bigcup_{\pi \in \mathrm{Gr}(n-\ell, n) }\bigcap_{\xi \in \pi \setminus \{0\}} \mathrm{ker} M^T(\xi) $$
Suppose we want to find solutions of the form $$ vf(\xi_1\cdot x, \dotsc, \xi_{n-\ell} \cdot x), $$ where $v \in \mathbb{P}^{k-1}$, $\xi_i \in \mathbb{P}^{n-1}$, and $f \colon \mathbb{R}^{n-\ell} \to \mathbb{C}$
We need $$ v \in \mathcal{N}^\ell := \bigcup_{\pi \in \mathrm{Gr}(n-\ell, n) }\bigcap_{\xi \in \pi \setminus \{0\}} \mathrm{ker} M^T(\xi) $$
$ \mathcal{N}^0 \subseteq \dotsb \subseteq \mathcal{N}^{n-1}$
Let $M = \begin{bmatrix} \partial_1 & \partial_2 & \partial_3 \\ \partial_2 & \partial_1 & \partial_4 \\ \partial_3 & \partial_4 & \partial_1 \end{bmatrix}$
netList solvePDE M
+----------------------------------------+------------------------------------------------------+
| 3 2 2 2 | |
|ideal(x - x x - x x + 2x x x - x x )|{| -x_1^2x_2x_3+x_1x_2^2x_4+x_1x_3^2x_4-x_2x_3x_4^2 |}|
| 1 1 2 1 3 2 3 4 1 4 | | x_1x_2^2x_3-x_1^2x_2x_4-x_2x_3^2x_4+x_1x_3x_4^2 | |
| | | x_1x_2x_3^2-x_1^2x_3x_4-x_2^2x_3x_4+x_1x_2x_4^2 | |
+----------------------------------------+------------------------------------------------------+
$$V_1 = V(\det M(\mathbf{x}))$$
$$B_{1,1}(\mathbf{x},\mathbf{z}) = \begin{bmatrix} -(x_1x_3 - x_2x_4)(x_1x_2-x_3x_4) \\ (x_2x_3-x_1x_4)(x_1x_2-x_3x_4)\\ (x_2x_3-x_1x_4)(x_1x_3-x_2x_4) \end{bmatrix} $$
Let $M = \begin{bmatrix} \partial_1 & \partial_2 & \partial_3 \\ \partial_2 & \partial_1 & \partial_4 \\ \partial_3 & \partial_4 & \partial_1 \end{bmatrix}$
Suppose $$v \in \mathcal{N}^2 := \bigcup_{\pi \in \mathrm{Gr}(2, 4) }\bigcap_{\xi \in \pi \setminus \{0\}} \mathrm{ker} M^T(\xi)$$
$0 = M^T(\xi)v $
$0 = M^T(\xi)v = \begin{bmatrix}v_1 & v_2 & v_3 & 0 \\ v_2 & v_1 & 0 & v_3 \\ v_3 & 0 & v_1 & v_2\end{bmatrix} \xi$
$0 = M^T(\xi)v = \begin{bmatrix}v_1 & v_2 & v_3 & 0 \\ v_2 & v_1 & 0 & v_3 \\ v_3 & 0 & v_1 & v_2\end{bmatrix} \xi$
$\implies \mathcal{N}^2 $is the variety corresponding to the $3 \times 3$ minors of the matrix above
$\mathcal{N}^2$ consists of six projective points, each of which is the normal of the lines going between the vertices of the elliptope
e.g. $(1,0,-1)^T \in \mathcal{N}^2$. The function $$ f(x_1,x_2,x_3,x_4) = \begin{cases} (1,0,-1)^T, & \text{ if } x_1 + x_3 = x_2 + x_4 = 0\\ (0,0,0)^T, & \text{otherwise} \end{cases} $$ satisfies the PDE \begin{gather*} \partial_1 f_1 + \partial_2 f_2 + \partial_3 f_3 = 0\\ \partial_2 f_1 + \partial_1 f_2 + \partial_4 f_3 = 0\\ \partial_3 f_1 + \partial_4 f_2 + \partial_1 f_3 = 0 \end{gather*}
A numerical future
We use the data "associated primes" $V(P_i)$ and "Noetherian multipliers" $B_{i,j}(\mathbb{x},\mathbb{z})$ to describe submodules of $\mathbb{C}[\mathbb{x}]^k$.
We use the data "associated primes" $V(P_i)$ and "Noetherian multipliers" $B_{i,j}(\mathbb{x},\mathbb{z})$ to describe submodules of $\mathbb{C}[\mathbb{x}]^k$.
$V(P_i)$ are represented by witness sets
We use the data "associated primes" $V(P_i)$ and "Noetherian multipliers" $B_{i,j}(\mathbb{x},\mathbb{z})$ to describe submodules of $\mathbb{C}[\mathbb{x}]^k$.
$V(P_i)$ are represented by witness sets
$B_{ij}(\mathbf{x},\mathbf{z})$ could be represented by sets of witness solutions
If $\xi$ lies approximately on $V(P_i)$ and $B(\mathbf x, \mathbf z)$ is a Noetherian multiplier, we say that $$ B(\xi, \mathbf{z})e^{\xi \cdot z} $$ is a witness solution
We use the data "associated primes" $V(P_i)$ and "Noetherian multipliers" $B_{i,j}(\mathbb{x},\mathbb{z})$ to describe submodules of $\mathbb{C}[\mathbb{x}]^k$.
$V(P_i)$ are represented by witness sets
$B_{ij}(\mathbf{x},\mathbf{z})$ could be represented by sets of witness solutions
If $\xi$ lies approximately on $V(P_i)$ and $B(\mathbf x, \mathbf z)$ is a Noetherian multiplier, we say that $$ B(\xi, \mathbf{z})e^{\xi \cdot z} $$ is a witness solution
Numerical module membership test, numerical primary decomposition, numerical module operations: sums, intersections...
Härkönen, M., Hirsch, J., & Sturmfels, B. (in preparation). Noetherian Operators and Wave Cones
Ait El Manssour, R., Härkönen, M., & Sturmfels, B. (2021). Linear PDE with Constant Coefficients.